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Institute for Management Science and Engineering

Program in Logistics

COMPUTING EQUILIBRIA V IA NONCONVEX PROGR AMMING It

by

Jonathan F. Bard
James E . Falk

1.0 Introduction

In this paper we investigate a procedure for computing equilibria

from the vantage point of mathematical programming . A competitive model of

an economy will serve as the basis for the discussion although a variety of

contexts would have been equally suitable. Other types of equilibrium prob-

lems, such as those arising in traffic network analysis, have direct con—

ceptual and analytic counterparts to those found in economics, and are

hence amenable to the same solution techniques.

A state of equilibrium exists when competing or opposing forces are

brought into balance. One of the major themes of economic theory is that

the behavior of a complex economic system can be viewed as an equilibrium

arising from the interaction of a number of economic units, each motivated

by their own special interests. General equilibrium theory ([2], [22],

[24]) seeks to determine the point at which this balance can be struck, and

in so doing focuses on the interrelationships that exist among the markets

for goods and services in the economy. The analysis, however , is carried

out in terms of individual decision makers and commodities rather than in

terms of aggregates . The fundamental questions that general equilibrium

theory attempts to answer are the same as those posed in macroeconomic

theory : given different economic, environments, what goods will the economy

— 1 —

~a~Liiiitpçy -4~~~
_ 

•_••~~ ~~~~~~~~~~~~~~~ 
__I

.. S



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — r ’.
~~~~~NJ ’  •1

T—386

produce, how will these be produced , and who will obtain them? But , where

macroeconomics provides answers in terms of aggregates, general equilibrium

theory provides answers in terms of the individual consumers, producers,

and commodities making up these aggregates.

Consider, for the moment, a model in which m consumers are engaged

in the exchange of commodities which they initially own and in which production

or supply is ignored. Suppose there are n goods in the economy and that

each of the consumer’s preferences is represented by a utility function. A

bundle of goods x is preferred to a bundle x’ by consumer i (1 = 1, . .,  ,m)
if and only if u

i
(x) > u . (x ’) where the utility function u

1 
: R~ -* It is

generally assumed to be strictly concave and continuous. Let p c R be the

vector of prices for the n goods. The demands of the ith consumer are

determined by the solution to the following problem:

maximize u .. (x)

• subj ect to <p, x> <

x > O

where w~ is the initial wealth or resource endowment of the ith consumer ,
I = 1,... ,m . We shall assume that the solution vector for this problem,

d1(p) , can be written as a continuous function of the prices p . The

individual trader’s excess demand function is di(p) — w1 (i = 1,... ,m)

and will be denoted by gi(p) . The excess demand will be positive for

those commodities whose stock he wishes to increase by exchange and negative

for the remaining items . If it is assumed that all purchases are to be

financed solely by the sale of assets, then individual budgetary constraints

lead to the following identity:

+ + p d~ (p) = p
1
w~ + • ‘.  + p w 1 

. (1)

The market excess demand function g : Rn ..~. R
n 

is simply the sum of the

S individual excess demand functions

• m
g(p) = 

~~ (d
1 (p) — w~) .i=l
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An equilibrium price vector p* is one for which all of the market

excess demands are less than or equal to zero with a zero price for any

commodity whose excess demand is strictly less than zero. This leads to

the formulation of the complementarity problem ([8], [17]):

g(p)<O , (2)

p
~~~o

, (3)

= 0 , (4)

whose solution p~ will be the focal point of this paper. Condition (4 ) ,

known as the Wairas Law [27], is obtained by aggregating individual excess

demands to create the set of market excess demand functions, and then put

in the form of (1). Walras’ law holds for all price vectors p whether

they be in equilibrium or not.

We note here that production may easily be incorporated in this

model by either replacing or augmenting the ith consumer ’s initial wealth

WI by a supply function. For individual i , this function relates the

prevailing market prices p to the quantity of goods produced .

A number of persons, including Nash [20], Arrow and Debreu [1], and

Kuhn [16] have studied the existence problem of the competitive model from

the standpoint of combinatorial topology . The first algorithms, however,

actually designed for computing economic equilibria were developed by Scarf

[23], and were based on a procedure for approximating a fixed point of a

continuous mapping. More recently , Wilson [28] and Elken [10] have exploited

path methods in the pursuit of greater computational. efficiency . In a

slightly different vein, Lemke [17] offered some constructive proofs relating

to the existence of equilibrium points for bimatrix games. His work strongly

suggested a computational scheme for models with linear excess demand

functions.

This paper presents an alternative procedure for computing equilibria

for a class of problems where the excess demand function or its logical

equivalent has an explicit representation that can be converted to a separable

form. Solutions are obtained by first recasting the complementarity problem

— 3 —

- 
- ‘I:T



- —5- --5— — —,,--.—— —v _____________________________________________________— __.. “— W ’ r ~-

T—386

into a nonconvex minimization problem whose optimal value or best upper

bound is known at the outset , and then using Falk’s [121 algorithm to locate S

a global solution. This allows us to go beyond the common linear formula-

tions of an economy or network (e.g., see Eaves [8], Negishi [21 1, or Asmuth ,

Eaves , and Peterson [4])  which , in spite of their outward simplicity, must

appeal to rather complicated algorithms if solutions are to be obtained .

The algorithm which we subsequently describe and use as an alternative

for solving (2) — (4) is based on a branch and bound philosophy , and as such,

computes a convergent sequence of upper and lower bounds on the optimal value

of the problem. In our case, however, because the best upper bound on the

objective function is known to be zero, the amount of work necessary to

achieve convergence is significantly reduced . The usual requirement of find-

ing a point that yields equality between the best upper and best lower bounds

is replaced by the simpler requirement of finding any point that yields an

objective value of zero.

In the next section, the complementarity problem is reformulated as

a nonconvex minimization problem whose solution yields the desired equilibrium

vector. Next , the method is applied to a number of sample problems and our

computational experience is detailed. Here we see that the results are

obtained in a surprisingly small number of iterations of the algorithm.

2.” Reformulation of the Complementarity Problem
S 

In the complementarity problem derived above, there is no objective

function to be optimized . Indeed , in many complex economic equilibrium

problems there does not appear to be a “natural” objective function whose

optimization yields prices and quantities in equilibrium (see, e.g., Scarf

[24]).

In spite of this, consider the following “artificial” minimization

problem P:

v* = min{—<p,g(p)> : g(p) < 0  , p > O} (P)

Now let p’~ be a solution of the complementarity problem (i.e., p~ is a

vector of equilibrium prices). Then p* is feasible to problem P, and

— 4 —  
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yields a value of 0 to the obj ective function. Since this objective

function is greater than or equal to zero at all feasible points , v~ = 0

Conversely, it is clear that any solution of (P) for which v* = 0 must S

be a vector of equilibrium prices.

Problem P is of a nonconvex nature, and in general, no suitable

technique exisis for the determination of a global, rather than a local

solution; however, if each excess demand function g. , i 1,2,.. .n , is

separable, i.e.,

j~ l 
g~~(p~) i =

and each g.. is continuous, then (P) can be written as a separable pro—

gramzning problem whose approximate global solution can be obtained with

arbitrary precision.

We now formulate an equivalent problem with a different objective

function but the same constraint region whose optimal value is equal to

that of (P). The equivalent problem P’ is

min{~ min (p.,—g .(p)) : p > 0 , g (p ) < O} (P ’)

Rewriting the objective function in (P’), we get the desired result :

mm {~~(min(O,—g~ (p)—p1) + p~
) }

g(p)~ O I
p
~
O

min{~~(min(O,w.) + p.)}

g (p) ~O
w+p+g(p) = 0

p
~
O

= min{~ (min(O ,w.) + p1)} (S)

~g~~(p~
) <

~
O

i = l ,2,...,n• w .+P .+~g..(p.) = 0

p
~
O

where the w ., ’s will be referred to as auxiliary variables.

— 5 —
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Problem S is still a nonconvex programming problem , but its separable

st ructure , created at the expense of a twofold increase in dimensionality,

makes its mathematics much more tractable. The traditional method for treat—

ing separable problems involves calculating piecewise linear approximations S

of the associated functions and applying a modification of the simplex method

to the resulting problem (see, e.g., Miller [19]). The modification amounts

to a restr!ction on the usual manner of selecting variables to exchange roles

(basic to nonbasic and vice versa) and will yield a local but not necessarily

a global solution of the approximating problem .

An algorithm for finding global solutions of nonconvex separable

problems was developed by Falk and Soland [13] and Soland [25]. The method

is based on the branch and bound philosophy and yields a (generally infinite)

sequence of points whose cluster points are global solutions of the problem.

The implementation of the method is limited by the necessity of comput ing

convex envelopes [11] of the functions involved although a number of applica-

tions have been shown possible when these functions exhibit special structures

(e.g., concave or piecewise linear).

The inherent limitations that special problem structures impose have

been overcome by the introduction of two algorithms independently developed

by Beale and Tomlin [5] and Falk [121. For this paper , we have used the

programming code MOGG based on the algorithm proposed by Falk and written by

Grotte [15], to solve a number of equilibrium problems. The results are

presented in the next section.

3.0 Computational Experience

A variety of equilibrium problems have been studied to test the

approach outlined above. The first is a multiconimodity, transshipment prob—

lem defined on an af fine network, taken from Astnuth , Eaves, and Peterson

[4] who used Lemke’s algorithm [17] to obtain a solution. The second involves

a simple competitive market comprising three producers , three consumers, and

three commodities. The supply and demand functions in this economy are given

a piecewise linear formulation, and three equilibrium points are known to

exist. The third problem is identical to the second except a majority of

— 6 —
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the piecewise linear functions have been recast as continuous, smooth

functions. The fourth problem provides an example outside the context of

economIcs, and is derived from a 3 node, 4 arc traffic network whose equiva-

lent excess demand function is both nonlinear and nonseparable.

The algorithm itself is based on branch and bound techniques and
considers subsets of a linear polyhedron containing the feasible region of

(5). A lower bound on the optimal value of the problem ic found by minimizing

the objective function over each of these subsets and selecting the smallest 
S

value obtained . A check for the solution is made which , if successful,

yields a global solution of the piecewise linear approximation to (S). If

the check fails, the subset corresponding to the smallest lower bound is

further subdivided into either two or three new linear polyhedra and the pro-

cess continues as before with new and sharper bounds being determined . The

process is finite and terminates with a global solution of the approximate

S problem.

3.1 Transshipment on Af fine Networks — Economic equilibria on

certain affine, niulticommodity, transshipment networks were first studied by

the regional economists Taykayama and Judge [26] using quadratic programming.

Recently, Asmuth, Eaves, and Peterson [4] have constructed a more general
S approach that utilizes the economic equilibrium conditions directly without

first passing to a quadratic programming problem . A ~rief discussion of

their model and the solution to the sample problem presented in their paper

follow.

The transshipment problem can conveniently be represented by a directed

graph (N,L) with a finite number of nodes (members of N) and links (members

of L) on which a finite number of commodities can be transported . Each node

in N represents the set of producers and/or consumers at a specific spatial

location; and each link ii in L represents a specific facility for trans—

porting commodities from some node i to a different node j . (In particular,

we assume that there are no loops; i.e., no links connecting a given node to

itself.) Each link is aligned to coincide with a direction of possible trans—

port ; therefore , at least two links must connect nodes between which corn—

modities can be transported in either direction.

I
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The nodes are enumerated in any order, consecutively beginning with

one — as illustrated by the graph in Figure 1.

S 

-

Figure 1. Sample Transshipment Network.

Let p
~ 

and p1 be n vectors denoting the unit demand price and

the unit supply price of n commodities at node i , and let p~~ c

denote the cost of transporting each of these n commodities over link ij

Affine relations are assumed between prices and quantities; i.e.,

i i i  ip = A x 4- a for each node I c N (5)

where p1 
= (p~~,p

1
) , A1 and ai are given constant matrices and vectors

(which arose in [4] from inverting the difference between given supply and
demand quantities , originally expressed as af fine functions of price), and

~ an n—dimensional vector representing the excess quantity of each

commodity produced by node i . It is also assumed that

— 8 —
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= A~~x~~ + a13 for each link ij c L (6)

where A’~ and ~~1j are given constant matrices and vectors (which arose

from describing the transport prices as functions of transport volumes), and

~~ c Rn denotes the quantity of n commodities transported over link ij

The quantities are constrained by the nonnegativity condition

x13 ~ 0 for each link ij c L (7)

and the commodity conservation condition

i ij jix = x — x for each node i c N (8)
jcN jeN

where ~~ = 0 if ij ~ L . Note that although x~~ is nonnegative by

virtue of the choice of link direction, the components of x~ might be

positive or negative depending on whether node i is a net exporter or

net importer of a particular commodity .

The price stability condition on p leads to the following relation—

ship :

p~~ + p’ > p
~ 

for each link ij c L (9)

To see this , assume that (9) is violated for some commodity c . As a

consequence some economic agent would find it profitable to purchase as much

of commodity c as possible at node i and transport it over link ij for

resale at node j . This would clearly be an economically unstable situation.

The final relationship needed to establish equilibrium is the

complementarity condition

< x~~, (p~ 
— p

13 
— p

~
) > = 0 for each link ij c L • (10)

This condition is imposed to insure that no positive flow x13 will

occur on a link if the cost p
~~ 

+ p
1 

of a commodity at node j exceeds the

price p
~ 

which a consumer is willing to pay.

— 9 —
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To conform with the notation developed in Section 1.0, a function S

~ R
n equivalent to the excess demand function but now expressed in

terms of prices rather than quantities will be defined by the following

expression:

g
i3 p~ 

— p13 — p
1 for each link ij c L

Through the appropriate substitutions the solution (x,p) to the

S economic equilibrium conditions (5) — (10) can be described entirely in

terms of the solution (x,g) to the linear complenientarity conditions

x > 0  <x,g> 0 g < 0  (11)

S g = - M x - v  (12)

where x , g , and v are vectors equal in size to the number of links

times the number of commodities, and H is a square matrix of comparable

dimension whose components are given in Figure 2. The constant v follows

from the substitution of (5) and (6) into (10) and is given by

ii j  ij  iv = a — a — a for each link 13 t L
d s

For purposes of illustration, the 2—commodity, 5—link network shown

in Figure 1 has been considered for analysis. The reworked data for this

problem is displayed in Figure 3. If conditions (11) and (12) are now put

into the format of (S) we get a problem of the form

10
mm ~ (min(0 ,w1) + x

1
) (A)

x,w 1=1

w. — M x + x  v .1. i i 1

— M 1
x < v

1 
i l ,2,...,lO

S 

x~0

where H
1 

is the ith row of M

The algorithm that is used for the computations does not solve the

original problem S, but constructs an approximate problem to solve by

replacing each of the associated functions with their piecewise linear
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-A , 0 A, v”

A, 0 A, v”

[M vJ = A, A,+A 3 +A 3 -A 3 -A , v’3

0 0 -A , A 3 +A4 +A 4 -A 4

A, -A , -A, -A 4 A,÷A 4 - +A ~ v~
2

Fi gure  2. Cons t i tuen t s  of Matr ix  for  Samp’e Network

4 - 1 -2 1 -1 1 0 0 1 - 1  1

2 3 -2 -2 0 - 1 0 0 0 1 2

-2 1 3 0 1 .
~~ 0 0 -

~~ 
I -~~

-2 -2 2 3 0 1 0 0 0 -1 5

-1 1 1 - 1 3 -3 - 1 1 -1  1 -2
[M II vi =

0 -1 0 1 2 3 - 1 - 1  0 -1 1

0 0 0 0 - 1 1 2 -2 0 2 0

0 0 0 0 -1 - 1 4 2 -2 0 -3

1 - 1  -1 1 -1 1 0 2 2 -3 2

0 1 0 -1 0 - 1 -2 0 4 2 4

Figure 3. Data for Affine Network
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convex envelopes. A related problem is simultaneously introduced which gives 
S

a sharper underestimate of the optimal value of the approximating prob lem

than does the convex envelope problem. It is this related problem that the

branch and bound procedure solves first to get estimates on the optimal value

of the approximating problem, and to set up new problems if the estimates do

not yield a global solution.

The functions defining the constraint region of problem A are all

linear, and hence convex, and therefore, will not be replaced in the approximate

problem. The functions associated with the nonlinear variables w~ in the

objective function (i.e., min(0,w1
) ,  i = l,...,n) are piecewise linear, but

concave and will be replaced in the approximate problem by their convex
5 envelopes, which In this case are straight lines. This is illustrated in

Figure 4.

min (Ojw~)

m m  maxv
i 

v
1

55-
—

--

Convex Envelope

Figure 4. Convex Envelope of min(0,w1
)
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The branch and bound technique proceeds to divide the domain of these

functions into pieces corresponding to their linear segments and separately

solves the set of related problems in which the nonlinear variables are respec-

tively limited. When every function is piecewise linear, as is the case with

(A), we get an exact solution to the original problem.

It is customary with branch and bound methods to describe the algorithm

- 
in terms of a branch and bound tree. The nodes of the tree correspond to the

related linear subproblems, while the branches of the tree correspond to the

set on which the branching variables are defined. A solution is obtained when

the best upper bound at any node is equal to zero. That is, any feasible S

point yielding a subproblem value of zero necessarily satisfies the equilibrium

conditions. For problem A, no tree developed because the solution was obtained

on the first iteration of the algorithm. The optimal vector x is given by:

x
1 

= (0.2353 , 0.7059) x2 (0.0, 2.2941) x
3 

= (1.5294, 0.0)

(1.0098 , 0.2151) x5 
= (0.0, 0.0) .

The formulation of (A) required the addition of 10 auxiliary variables

to the original set of 10 linear variables. The former were each divided into
S two intervals for the purposes of branching. This division, corresponding to

S the segments of the piecewise linear functions defined for these variables, -
~

implied that any branch and bound tree produced by the algorithm could be at

most 10 branches deep and that no variable could appear more than once along

any path. In theory, it might have been necessary to solve up to 211 — 1

subproblems before reaching a solution; however, the fact that the first

subproblem produced an equilibrium point underscores the computational eff i—

ciencies that result from having available at the outset a means of independently

checking each iteration for convergence.

Each subproblem solved by HOGG is a linear program . When the excess
S 

demand functions are affine, the solution vector necessarily yields a feasible

• point to the original problem. The upper bound associated with this feasible

point will always be greater than or equal to zero, but generally not corres—

pond to an equilibrium solution. Mangasarian [18] has shown that the linear
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complementarity problem is equivalent to a linear program whose cost

coefficients are dependent upon the structure of H . The similarity

between these linear programs and those set up by MOGC when M meets cer-

tain conditions admits the possibility that HOGG will produce an equili—

S 
brium point on the first iteration. Although these conditions might logi-

cally arise in some economic contexts , they were not present in this example

- 
and, hence, did not influence the rate of convergence.

3.2 A Piecewise Linear Market — This example [7] provides a simple

explanation of how a competitive market operates. As is common in micro—

economic theory , we will distinguish among individuals according to the

economic functions Lhat they perform or on the basis of the kinds of deci-

sions they make. Thus, a consumer is an individual (or unit) that consumes

commodities and supplies inputs to production . The role of the consumer may

be defined as that of choosing from among the alternative commodity bundles

available to him. Similarly , a producer is an individual (or group) that

util izes inputs to produce commodities . The role of the producer may be

characterized as that of choosing from among the alternative input—output

patterns available to him. The same individual might appear in the economy

both as a consumer and as a producer. Once the choices are made, a state

of the economy is defined .

Under certain assumptions (see, Quirk and Saposnik [22]) b r a  market

that contains a commodities, m consumers, and Q~ producers , the aggregated

(net) amounts of commodities demanded and supplied for any vector of prices

can be determined by a simple summation of the amounts demanded and supplied S

by individual consumers and producers. Thus, given the price vector p

where ~ 
= 

~~~~~~~~~~~~~~~ 
we can write Xjj (P) as the amount of the ith

commodity consumed (or supplied as an input in production) by the j t h

individual at the set of prices given by p ; and 
~~~~~ 

as the amount of

the ith commodity produced (or used up as an input in production) by the kth

firm at the set of prices given by p . Then, the aggregate (net) consumption

of commodity I by consumers is given by
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x.(p) = ~ x1.(p) i = 1,2,... ,n
j=l ~

and the aggregate (net) production of commodity i by producers is given by

= 

~ 

i = 1,2,.. .n S

• k=l

We then define x ( p )  and y ( p )  as poi nt to point mappings from in to

itself. In the absence of any initial endowment the excess demand function

can be written as g(p) = x(p) — y(p)

The samp le economy under consideration contains three commodities,

three consumers, and three producers. The associated supply and demand

functions are assumed to be piecewise linear, and are given in graphic form

in Figures 5 and 6. To conform with the presentation in [7], the equilibrium

quantity rather than the equilibrium price will be computed. The following

notation will be used:

PS 
= jth producer ’s supply price for commodity i

:1.1

= j th consume r ’s demand price for commodity i
1~]

x . = quantity of ith commodity consumed

= quantity of itt, commodity produced

where i,j 1 ,2,~~, p ~ 
PS 

is a function of the consumption variable
I j  i j

x and = 

~ ~d 
is a function of the production variable y

i j  ii

An equilibrium point will exist if the following conditions are

s- i t isfied :
x~~’0 , y > O  (13)

x — y 0 (14)

~d~~~~s =
0 (15)

~~ 
~d 

— PS
> = 0 (16)
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Figure  6. De mand Functions for  Piecewise Linear Market
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where PS and 
~d 

are the three—dimensional market supply price and market

demand price vectors. The first condition assures feasibility ; the second

condition clears the market; the third condition assures price consistency S

by requiring the excess demand function to be less than or equal to zero ;

and the fourth condition is Walras’ Law and reflects the following circum-

stances : if x . , the quantity of the ith commodity being purchased , was

• positive and if the producers ’ supply price p was greater than the 
S

consumers’ demand price p , then the producers would be losing money and
d1

begin to lower y. (=x.) to zero. Such a situation would be economically

unstable.

Conditions (13) — (16) can now be written as a minimization problem

in the form of (P).

min{<—x

— 

~s 
< 0

x > 0

In order to recast this problem in the form of (S), the consumption and
- 

production data given in Figures 5 and 6 must be aggregated over their respec-

tive agents to obtain the market demand and supply curves and p

This has been done for each of the three commodities.

Commodity 1

(—2x 1
+18 < l’~

= 
— 

+ (6—3x
2
) + (5—2x

3
)

1 (— 0 . 5 x 1+l6.5; x l > 11

~llx 1 ; x1 ~ 1)
p = 

— 

~, + (2+x
2
) + (2+2x 3

)
~1 ~7.5x 1 

— 3.5; x1 
> 1)
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Commodity 2

= (l2—5x
1
) + (l4—2x

2) + (l0—5x
3
) S

2

112x 2 ; x 2 < 1~
p = 4 + ~~S

2 !3x 2+9; x2 > 1)

Commodity 3

—x
3
+8 ; x~~< 1

‘d 
2+(5—2x

2
) +  —

3 —2.5x
3 

+ 9.5; x
3 

> 1

(0 ;x 1
< l  5x

3 
; x

3
< l ~

‘ 
— 

~~~~~~~~~ 

— (
S

3 (3x1 
— 3; x1 

> 1 0.5x
3 

+ 4.5; x3 
> 1!

The minimization problem in its separable form becomes

3
mm ~ {min(0,w.) + x.} (B)
x,w i=1

w. + p - p  + x . 0
1 d . S .  1

1 1 1 = 1 ,2,3
— p  ~~0

i S
i

x > 0

where and PS are defined above.
i i

Each of the six variables in (B) is nonlinear , the first three

(w1,w2,w3
) corresponding to the auxiliary variables and the second three

(x1,x2,x3
) to the original problem variables. The associated functions

are piecewise linear and contain at most one break point. This means that

the branch and bound tree can be at most six nodes deep and that a maximum

of 2~ — .~ subproblems might have to be solved. Once again though , the

algorithm converged on the first iteration. The computed best upper bound

for the first subproblem is zero and hence the solution .
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if the algorithm is permitted to run past this ‘oint until its usual

termination conditions are met a total of 19 subproblems ~~1l be solved .

Figure 7 depic ts the resultant branch and bound tree which serves to illus-

trate both the advantage of knowing the optimal value at the outset and the

amount of work required to search for alternative solutions . The known

results are corroborated at node 9.2 where roundoff errors have produced a

S best upper bound of —0.2 x ~~~~ and a best lower bound of 0.1 x lO~~
a minor contradiction. The two numbers adjacent to each node represent the

I 

best upper and lower bounds for that subproblem. A bar in the place of the

best upper bound indicates that no corresponding feasible point to the

approximate problem exists. The numbers along the branches refer to the

branching variables associated with the preceding node , and the + and —

signs indicate whether the particular auxiliary variable was permitted to

S 
range over the set of posi tive real numbers or negative real numbers , respec-

tively. The bars appearing below the nodes indicate that either the lower

bounds of the associated subproblems are all greater than the current best

upper bound or that they are infeasible and , therefore , canno t con tain the

solution.

In terms of the actual variables , the sol ution vec tors are
= (2 ,1,1) and w* = (—2,—l,—1) . From the equality constraints in (B),

it can be seen that x~ + w~ = 0 whenever the corresponding excess demand

functions are binding . By tra’ing the convergent path backwards from node

9.2 to node 0.0 we see that the branches that fall along this path correspond

to the nonpositive orthant of w . The subscripts attached to the branching 
S

variables in the tree denote the (closed) intervals over which the original

problem variables are defined for all subsequent subproblems .

3.3 A General Market — The separable programming algorithm works by

f irs t replacing each of the ori ginal problem functions with their piecewise

linear convex envelopes , and then crea ting a new problem to solve as an
- 

ultimate approximation . From this approximate problem a series of convex

subproblems issue that are set up and solved under the branch and bound

philosophy. If the original functions are all piecewise linear (but not
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necessarily convex) then solving the aggregate of subproblems is tantamount

to solving the original problem exactly. Such was the case in both examples

1 and 2. In this example, four of the piecewise linear functions in Figures 5

and 6 have been replaced with smooth counterparts. The new functions were

constructed to pass through the points (1,.) and (2,) ,  and are given by: S

16.516 e
(_0

~
03l75X

l
) 

S

11

• 
~d 

-O.75 x~~- 0.25 x
3
+8

33

p —3.75 x
2
+ 14.75 x

s11 1 1

p5 
= 17.31234 log(x~~

463+l)
22

Substituting these functions for the originals in problem B leads to a new

minimization p rob lem that can be wr itten as

3
mm ~ (min(0 ,w .) + x

~
) (C)

w,x i=1

subjec t to

w
1 + 3.75 x~ - l3 .75x

1 
+ 16.516 e~~

0 03l75Xl
) 

- 4x
2 

- 4x
3 

= - 7

w
2 

- 5x
1 

- 17.31234 1og(x~~
46
~+l) - x

2 
- 5x

3 
= - 29

( 0 ; x
1 

< l’I (0.75x~ + 4.25x
3 

— 8 ; x3 
< 1)

w —
~~~~ 

) — 3 x  —
~~~~

~ (3x
1
—3; x

1 
> l~ 

2 (O.75x~ — 0.25x
3 

— 3.5; x3 
> l~

3.75 x~ - 14.75 x
1 
+ 16.516 e~~

0 0
~

17
~ 

x
1
) 

- 4x2 -4x3 < - 7

- 5x1 
- 17.31234 1og(x~~

463+ 1) - 2x2 
- 5x

3 
< - 29

0 ; x 1 0.75x~ + 5.25x3 
— 8 ; x < 1

— 3 x  — < — 4
S 3x1— 3; x1 

> 1 2 
0.75x~ + 0.75x

3 
— 3.5; x > 1 

=

• x
1
> 0  , x2

> 0 ,x3
> 0
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Th e number of cuts required to approximate a piecewise linear

function exactly is equal to the number of segments constituting that func-

tion. When the function is smooth, it cannot be represented exactly by a

f inite number of linear segments but can be approximated with arbitrary

precision by increasing the number of cuts. In this example, six cuts were

made in the original problem variables (x
1,
x2,x3

) over the closed interval

[0,3]. Owing to the fact that the cuts were evenly spaced every half integer,

and that the graphs of the smooth functions pass through the solution points

of (B), it is reasonable to expect that the solution to (C) would coincide

with one or more of these points. This indeed was the case, the identical

solution x~ 
= (2,1,1) , resulted for (C). The associated branch and bound

tree is shown in Figure 8. The algorithm is seen to have converged in the

tenth stage at node 10.1 after 22 subproblems had been solved. This con-

trasts with the first two examples where the solution occurred on the first

iteration ; however, in each of these three problems, the first feasible

point produced by the algorithm resulted in the solution . Finally , we

observe from Figure 8 that at the tenth stage, the best upper bound and the

best lower bound are nominally equal implying that the general conditions

for optimality have been satisfied , so the algorithm terminated . If an

equilibrium point had not yet been found at this stage , it would have been

reasonable to conclude that none existed for the given model. The other

two equilibrium points were not uncovered.

3.4 Network Traffic Flow — The model of the road system considered

here derives from the notion that there exists a large community of users,

each of whom takes the quickest route available, given the actions of other

users. The number of trips taken is assumed to depend on the time required

to make a trip, while the travel time on a particular road is assumed to

depend on traffic volume . The example that we will investigate was studied

by Asmutl-& [53 ] who used stationary point theory in conjunction with the Eaves—

Saiga l algorithm [9] to obtain a solution . As will be seen, the traffic

f low problem closely resembles the inulticominodity network presented in

example 1.
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Figure  8. Branch and Bound Tree for General Market
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To fo rmulate the model, consider a directed network (N,A) with

nodes i in N and arcs ij in A . For each arc i j  , we are given a

delay functi on f~~ which expresses travel t ime on arc ij as a function

of the traffic flows on the arcs of the network. The travel time along arc

ij  will necessarily depend on the flow on that arc , but may as well depend

on flow s along other arcs. For example , a two—way street could be modeled

as a pair of opposing arcs where the flow on one of the arcs might affect

the travel time on the other.

For each pair of distinct nodes i and k we are also given a t ravel

demand function 
~

•
~ k 

which expresses demand for travel from i to k as

a function of travel times between nodes on the network. Demand for travel

from I to k will depend on travel time from I to k as well as on

travel times between other pairs of nodes; for instance , from i to some

alternate destination . S

Numerous solution procedures have been proposed for computing equilibrium

S traffic flows and t ravel times on the network. When f is integrable and g

has an inverse which is integrable the usual approach has been to reformulate

th e equilibrium problem as a convex progranuning prob lem. These conditions

will be met if each f~ . depends only on the total flow along arc ij , and

each is monotone decreasing and depends only on the travel time from

node i to node k . Beckman [61, Florian and Nguyen [143, and others have

addressed this problem under comparable conditions.

Ln practice , the demand and delay functions f and g are at best

empirical fits and can be endowed with these or any other restrictic’ns which

may seem useful. Asmuth ’s approach does not depend on such restrictions ,

but only requires that the delay functions f1. be positive on each arc ,

that the travel demand functions be nonnegative and bounded for each

pair of nodes, and that the network be complete; that is, a directed path

must exist from every node to every other node. From a strictly analytic

point of view , we will require only that it be possible to put the functions

• f and g into a separable form . However , if the model is to accurately

reflect the properties of the system it might be desirable to adopt the above

• restrictions .
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The mathematical conditions for a user equilibrium are presented

below . The travel time from node i to node k will be written as ~~ k

and the flow on arc i~ with destination k will be written as

it will be said that the travel time vector t and flow vector y are in

• equilibrium if the following conditions hold:

gI,k
(t) = 

~: ~‘ij,k 
— 

~ ~
‘ji,k 

i#k, i,kiN (17)
3 3

y~~~ 0 (18)

t
i k  ~ 

f
1~
(~) + t

i k  
i#k, ijiA , kcN

(19)
tk k O kcN 

S

~
‘ij,k~~ij~~~ 

+ t
j k 

— t
ik
) = 0 i#k, ijcA , k cN (20)

~ij  
= 

~ ~i j, k ijcA (21)

Condition (17) is the conservation of flow equation . It says that the traffic

leaving node i with destination k is the sum of the traffic arriving at

node i with destination k and the traffic originating at i with des—
• tination k . Condition (18) says that traffic flows cannot be negative. 

S

Conditions (19) and (20) require that traffic flow by the fastest S

route available. In (19) we require that t 4 ~ not exceed the minimum

travel time from I to k given the flows y on the network; (20) limits

the traffic to those routes which achieve this minimum travel time. Together

(19) and (20) imply the principle of minimum travel time. This says that

if any traffic flows from i to k ; that is, if 
~ 
y1. k 

> 0 , then
j

t
i k  

= mm (f
1~~

(y) + t i k
)

Equation (21) relates the basic flows to the total arc flows.

It may be useful to think of this system as a multicominodity network,

• where all of the traffic destined for a particular node k is a separate
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commodity, all of which must be shipped to node k via the network. In

this way g~~~(t) is the amount of commodity k which must travel from

node i to node k . This trip will traverse a path of arcs from i to k

CondItions (17) — (21) can be put in the form of problem P as f ollows:

mm 
~ 

< “i k ‘ 
~~~~~ 

— 
~~~• k 

+ ~i k~ 
>

y~ O keN ijeA ~~ ‘ 
3 3 ,

S t>O i~k

subject t~~

— f . • — t. + t . < 0 i~k, ijcA , keN
13 j,k i,k =

S 

~~~~ 
— Z ~ij,k + 

~ ~ji,k 
= 0 i#k, i,keN

Yij 
— 

~~ ~Ij,k 
= 0 ijEA

Rewriting this problem in the form of (1.7) we get

mm ~ ~ (inin(O ,w1. k~ 
+

y>O keN ijeA ~~~‘

t50 i~k
w

- subject to

W
j j k  

— tj~~ + t i k  
+ 

~ijk 
= 0 i#k, ijeA, keN

— f .. — t . + t . < 0 I,~k, ijCA, keN
ij j,k i,k =

8i ,k 
— 

~~ ~ij, k + 

~ ~ji,k 
= 0 i#k, i ,kcN

Yj. — 
~~~~~~~~~~~ k ° ije A
k

The sample problem presented below is from [4] and is based on the

directed network shown In Figure 9.
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12

1 2

21

31 23

3

Fi gure 9. Sample Traffic Network

Here N = (1,2,3.) and A = {12 ,2l,23,3l} where arcs 12 and 21 represent

a two—way street. The delay functions are

(y
12—l0)S 

f
12
(y) = 10 + e + 1.25 log(y 21+l. 0)

f21 (y)  10 + e + 1.25 log(y
12
+l.0)

f
23
(y) = 4 + e

(y
31
—20)

f
31
(y) = 4 + e

where

~ij 
= 

~~~i j , k
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and the travel demand functions are

80g
1 ,,

(t) = 

t +1
‘ 2

120 ‘1
g1 ~, ( t )  = +1S 

‘ 1

t2 1 +l if t2 1  ~
g2,1

(t) = 

100 if ~ < ~

S 

t2 1+l 2 ,1 2,3

80S if t
t
2 3

-I-l 2,1 = 2,3

g2 3(t) 
=

if t < t
t2 3+1 2 ,1 = 2,3

60
g3 1 (t) = 

~3 1
+1

100g3,2
(t) = 

~3 2~~

When more than one function value is given at a particular point

(e.g., t2 1  
= t2 3 ) the value of g is the convex hull of the two values.

in this case some of the travelers from node 2 will go to either 1 or 3

depending on which is closest, If the travel times are equal then those

travelers who want to go to either 1 or 3 will be divided between the two

destinations.

in their present form , the demand functions g
2 1  

and g
2 3  

exhibit

an implicit dependency on the t ravel times t2 1  and t
2 3  

and therefore ,

must be made separable before the equilibrium problem can be solved . Although

t h i s  cannot be done exp l ic i t ly, the desired result can be achieved by

— 29 —
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considering the following three disjoint partitions of t :

t2 1  
< t2 3  , t2 l  

= t2 3  , t2 l  
>

The mathematical program associated with each of these partitions comprises

26 variables and 27 constraints. Of the 26 variables , 12 are of the type

required to achieve separability of the functions while the remainder are

defined in the original problem statement.

The solution was uncovered in the third partition at the 84th stage S

after 168 subproblems had been solved, and once again, coincided with the

first feasible point found. The resultant branch and bound tree is not dis—

p layed because of its extensive length , but the final computations are high-

lighted in Table 1 along with the results obtained by the Eaves—Saigal S

algorithm. The minor discrepancies observed between the variable and func-

tional values computed by either method can be attributed to the grid size

superimposed on the algorithm and are, hence, subject to control. Finer

resolution is strictly a matter of increasing the number of grid points pre-

scribed for the original nonlinear variables and solving a proportionately

larger problem.

4.0 Conclusions

The computation of equilibria plays a major role in the analysis of

economic and transport  systems . Whenever the equilibrium problem can be

formulated as a set of complementarity equations, we have shown for those

cases where the original functions are implicitly separable, that nonconvex

programming can be used to obtain a solution to either problem . A general

algorithm based on branch and bound techniques was adapted to perform the

equilibrium computation . Unlike the usual nonconvex program though , where

the solution is recognized only when equality is achieved between the best
S upper and best lower bounds, an Independent check can be made for the solu-

tion at each iteration because the best upper bound is known at the outset .

.\o our computational experience demonstrates, this enhancement markedly

inc reases the ef f ic iency of the algorithm .

-- 
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Table 1

RESULTS FOR TRAFFIC NETWO RK PROBLEM

- Eaves—Salgal 
MOGGAlgorithm

i,k t
i,k 

g~~~(t) ti,k 
gjk (t)

1,2 19.30 3.94 19.45 3.91

1,3 28.43 4.08 28.58 4.06

2 ,1 13.22 2.81 13.21 2.81

2 ,3 9.13 7.90 9.13 7.90

3,1 4.09 11.79 4.09 11.79

3,2 23.38 4.10 23.54 4.07

ij,k y - f .. y.. f ..
_______ 

ij,k ‘3 ij,k 1]

12,2 8.04 19.30 7.99 18.68

12,3 4.08 19.30 4.06 18.68

21,1 1.15 13.22 1.21 13.21

21,3 0.00 13.22 0.00 13.21

23 ,1 1.66 9.13 1.60 8.76

23 ,3 11.97 9.13 11.96 8.76

31,1 13.46 4.09 13.41 4.08

31,2 4.10 4.09 4.08 4.08
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However, the fact that a numerical procedure will terminate with

the correct answer in a finite number of iterations is no guarantee that

it will be of any practical use. The combination of method and algorithm

under study derives its tentative usefulness from the observation that for

most problems investigated , convergence occurred in a far smaller number of

iterations than theoretically possible. The results have been especially

encouraging for problems of larger dimensions; and in all cases, the equilib-

rium solution coincided with the f i rs t  feasible point found by MOGG .

The af fine equilibrium problem or linear complementarity problem

holds a particular interest because of its unique structure and implicit S

relationship to an equivalent linear program . Because of the similarity

between the first subproblem set up by MOGG and this linear program , immediate

solutions are often obtainable from MOGG at little extra cost. In fact , the

additional work required to determine the equivalent linear program , even

fo r relatively small p robl ems , is of ten more burdensome and more computa—

tionally expensive than permitt ing MOGG to run beyond its f i r s t  subproblein

to a point of convergence. A further and decided advantage of MOGG is that S

it will solve all a f f ine  equilibrium problems regardless of their matr ix

st ructure.  By contrast , the majority of alternative procedures available

are limited in their application to a number of special cases which do not

necessar ily arise in practice.
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